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The synthesis of a mixed thiophene unit containing octahomotetraoxa[2]thiophenecalix[2]arene is
described. Its single-crystal X-ray structure and a preliminary solution complexation study are reported
herein.
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1. Introduction

Due to their potentially useful chemical properties and their
applications, heterocyclic-based calixarenes such as, 1,1 2,2 3,3 44

and 5,5 have gained considerable attention recently from many re-
search groups. These heterocycle-based calixarenes (Fig. 1), respec-
tively, incorporate pyridine, furan, thiophene, indole or pyrrole
units instead of the conventional phenolic units in the construction
of the macrocyclic compound.

In some cases, more than one type of heterocyclic unit have
been used, as in calix[2]bipyrrole[2]furan (6) and calix[2]bipyr-
role[2]thiophene (7) (Fig. 2). Sessler et al.6 have shown that the
mixed heterocycle-containing compounds, 6 and 7, for example,
selectively bind with specific anions, such as acetate and benzo-
ate, with high binding constant values. Among other mixed hete-
rocalixarenes some containing imidazolium units within the
frameworks of the calixarene (not shown) have also been synthe-
sized and these compounds were found also to be good anion
receptors.7

As part of our on-going studies concerned with the supramolec-
ular binding abilities of diverse bowl-shaped compounds with neu-
tral guest molecules, in particular, fullerenes8 or with other guest
species,9 we anticipated that the replacement of a single, or of
two of the benzene rings in octahomotetraoxacalix[4]arene with
thiophene rings, to form new derivatives such as 8 (Scheme 1)
ll rights reserved.
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could produce a potential new host for C60- or C70-fullerene
(Fig. 3). Although such a molecule would have a large degree of
rotational flexibility due to the presence of four (–CH2–O–CH2–)
ether units linking the phenyl and thiophenyl units together,
molecular modelling studies indicated that this compound could
have a well-defined cavity which could embrace these fullerenes.
Indeed, based on some of our previous experiences,8b,c it was
hypothesized that the presence of the four ether oxygen atoms
and the two sulfur atoms within the cavity could play an important
role and could potentially enhance its complexation ability to-
wards C60 and/or C70 or other guests. Furthermore, molecular
mechanics modelling10 suggested that there could be additional
favourable p-CH3 interactions resulting from the embracing tert-
butyl groups8b on the phenyl units.

In this Letter, the synthesis of the mixed thiophene unit contain-
ing ‘octahomotetraoxa[2]thiophenecalix[2]arene’ (8) is described.
As well, its single-crystal X-ray structure and a preliminary solution
complexation study are reported.
2. Results and discussion

The synthesis of macrocycle 8, was achieved11 in 21% overall
yield by base-mediated condensation of 9 with 2,6-bis(bromo-
methyl)-4-tert-butylanisole (10) as outlined in Scheme 1. The reac-
tion was conducted by slowly adding an equimolar solution of 9
and 10 in THF to a mixture of NaH in THF at reflux temperature.
The precursor compound, 2,5-bis(hydroxymethyl)thiophene (9)12

was easily derived via LiAlH4 reduction of dimethyl thiophene-
2.5-dicarboxylate (11) which in turn, was readily obtained by
esterification of commercially available 2,5-thiophenedicarboxylic
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acid (12). The other precursor, 10, was synthesized13 in 68% yield,
by bis-bromomethylation of p-tert-butylanisole (13) which also
afforded the undesired side-products 14 and 15, in �10% and
20% yields, respectively.
2.1. NMR spectroscopy

The 1H and 13C NMR spectra of 8 were in agreement with the
expected product and its simplicity indicated that this compound



Figure 3. Side- and top views of computer-generated space-filling models of a
hypothetical 1:1 supramolecular complex of C60 with 8.

Figure 5. POV-ray rendering of 8 (hydrogen atoms omitted for clarity) showing one
chain of macrocycles.

Figure 6. POV-ray rendered structures of the two individual molecules present in
the asymmetric unit of the X-ray structure of 8. The top structure shows the ‘partial
cone’ conformation in which the two thiophene units and one of the phenolic units
are syn while the bottom structure shows the ‘1,2-alternate’ conformation in which
the two thiophene units are anti.
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is highly symmetrical. The 1H NMR spectrum shows two signals at
low field, one corresponding to the protons of the aryl units and
the other for the protons of the thiophenyl units. The bridging
methylene protons appeared as two sharp singlet signals, one at
d �4.51 and one at �4.75 ppm in the 1H NMR spectrum, showing
that this compound is highly flexible at the ambient temperature.
This confirms the hypothesis stated earlier, that a factor contribut-
ing to this flexibility is likely due to the presence of four ether
bridges which link the aryl and thiophenyls.

The 13C NMR spectrum was also consistent with the structure of
8, showing only six carbon signals at the low field region corre-
sponding to the aryl and thiophenyl carbons and five signals at
higher field for the remaining carbon atoms in the molecule.

2.2. X-ray crystallography

Colourless crystals of 8 which were suitable for single-crystal
X-ray diffraction analysis were obtained from a methanol/dichlo-
romethane solution. The single-crystal X-ray structure ( Fig. 4)14

revealed that there are two molecules in the asymmetric unit. A
similar supramolecular solid state ‘dimer’, not commonly found
in calixarenes in general, was previously observed by us in a
calix[4]naphthalene.15

In the present case, the two molecules are packed in such a way
that one of the phenyl units is situated within the hydrophobic
cavity of the second molecule. One of the tert-butyl groups of each
molecule is situated above a phenyl ring of the second molecule
with the aromatic carbon to hydrogen of the tert-butyl group hav-
ing a contact van der Waals distance of 2.73 Å, thus indicating sig-
nificant p-CH3 interactions being present. Short H� � �O contacts of
2.438 and 2.62 Å can also be seen between protons in each of the
nestled phenyl groups and oxygen atoms of the bridging –
CH2OCH2-group. These interactions lead to the formation of helical
chains that run parallel to the a-axis (Fig. 5). Figure 6 shows the
conformations of each molecule present in the asymmetric unit.
Figure 6a reveals a nearly-‘partial cone’ conformation in which
the two thiophene units and one of the phenolic units are all syn,
while Figure 6b reveals a nearly-‘1,2-alternate’ conformation in
which the two thiophene units are anti.
Figure 4. POV-ray rendered asymmetric unit of 8 in which hydrogen atoms have
been omitted for clarity, showing: (a: left) 30% probability ellipses; and (b: right)
showing (blue-coloured atoms) the proximity of a tert-butyl group of one molecule
with the phenyl ring of its dimer mate.
2.3. Complexation studies

Solutions of 8 in either toluene-d8, benzene-d6 or CS2, solvents
which are usually employed for NMR titration complexation stud-
ies with fullerenes were treated with C60 or C70. In all of the cases
examined however, no colour changes which are normally associ-
ated with these complex-formation experiments were observed,
nor were there any complexation-induced chemical shift changes
in the 1H NMR spectra.

In summary, the synthesis of the mixed thiophene-based ca-
lix[4]arene 8, using a [2+2] fragment condensation reaction is de-
scribed. A single-crystal X-ray structure revealed that this
compound forms a ‘dimer’ in the solid state. Titration experiments
with several guest including C60, C70 however failed to reveal any
evidence of complex formation.
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